publications
publications by categories in reversed chronological order. generated by jekyll-scholar.
2025
- Longitudinal risk prediction for pediatric glioma with temporal deep learningDivyanshu Tak, Biniam A Garomsa, Anna Zapaishchykova, and 16 more authorsNEJM AI, May 2025
BACKGROUND: Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence patterns and severity are heterogeneous and challenging to predict with established clinical and genomic markers. As a result, almost all children undergo frequent, long-term, magnetic resonance imaging (MRI) brain surveillance regardless of individual recurrence risk. Longitudinal deep-learning analysis of serial MRI scans may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers, but, thus far, progress has been limited by data availability and current machine-learning approaches. METHODS: We developed a self-supervised temporal deep-learning approach tailored for longitudinal medical imaging analysis, wherein a multistep model encodes patients’ serial MRI scans and is trained to classify the correct chronological order as a pretext task. The pretrained model is then fine-tuned to predict the primary end point of interest - in this case, 1-year recurrence prediction for pediatric gliomas from the point of last scan - by leveraging a patient’s historical postoperative surveillance scans. We apply the model across 3994 scans from 715 patients followed at three separate institutions in the setting of pediatric low- and high-grade gliomas. RESULTS: Longitudinal imaging analysis with temporal learning improved recurrence prediction performance (F1 score) by up to 58.5% (range, 6.6 to 58.5%) compared with traditional approaches across datasets, with performance improvements in both low- and high-grade gliomas and area under the receiver operating characteristic curve of (range, 75 to 89%) across all datasets. Recurrence prediction performance increased incrementally with the number of historical scans available per patient, reaching plateaus between three and six scans, depending on the dataset. CONCLUSIONS: Temporal deep learning enables high-performing longitudinal medical imaging analysis and point-of-care decision support for pediatric brain tumors. Temporal learning may be broadly adaptable to track and predict risk in patients with other cancers and chronic diseases undergoing surveillance imaging. (Funded in part by the National Institutes of Health/National Cancer Institute (U54 CA274516 and P50 CA165962), and Botha-Chan Low Grade Glioma Consortium.).
2024
- A foundation model for generalized brain MRI analysisDivyanshu Tak, Biniam A Garomsa, Tafadzwa L Chaunzwa, and 18 more authorsDec 2024
Artificial intelligence (AI) applied to brain magnetic resonance imaging (MRI) has the potential to improve disease diagnosis and management but requires algorithms with generalizable knowledge that can perform well in a variety of clinical scenarios. The field has been constrained, thus far, by limited training data and task-specific models that do not generalize well across patient populations and medical tasks. Foundation models, by leveraging self-supervised learning, pretraining, and targeted adaptation, present a promising paradigm to overcome these limitations. Here, we present Brain Imaging Adaptive Core (BrainIAC), a novel foundation model designed to learn generalized representations from unlabeled brain MRI data and serve as a core basis for diverse downstream application adaptation. Trained and validated on 48,519 brain MRIs across a broad spectrum of tasks, we demonstrate that BrainIAC outperforms localized supervised training and other pretrained models, particularly in low-data settings and high-difficulty tasks, allowing for application in scenarios otherwise infeasible. BrainIAC can be integrated into imaging pipelines and multimodal frameworks and may lead to improved biomarker discovery and AI clinical translation.